Stable Menus of Public Goods

Stony Brook 2023

Sara Fish, Yannai Gonczaworski, Sergiu Hart
July 27, 2023

Harvard University
Motivation

Decision makers often select “public goods” to provide to unit-demand agents:

- Which electives should an online school offer?
- Where should a vending machine company locate identical machines?
- When should I schedule my office hours?
Motivation

Decision makers often select “public goods” to provide to unit-demand agents:

- Which electives should an online school offer?
- Where should a vending machine company locate identical machines?
- When should I schedule my office hours?

Common themes in these problems:

- View as matching problem: agents match to favorite available good.
- Each good needs minimum usage to justify existence.
 \[\rightarrow\text{goods’ preferences have complementarities}\]
- No capacity constraints (unlike much of the assignment literature).
Motivation

Decision makers often select “public goods” to provide to unit-demand agents:

- Which electives should an online school offer?
- Where should a vending machine company locate identical machines?
- When should I schedule my office hours?

Common themes in these problems:

- View as matching problem: agents match to favorite available good.
- Each good needs minimum usage to justify existence.
 \[\rightarrow\] goods’ preferences have complementarities
- No capacity constraints (unlike much of the assignment literature).

This talk:

- How to define stability for a matching in this setting?
- Existence of stable outcomes? Strategic considerations?
Related Work

Matching

Public projects

Committee selection
Related Work

Matching
- Existence (Gale + Shapley ’62)
- No complementarities (Hatfield and Kojima ’08)
- Strategyproofness (Dubins + Freedman ’81, Roth ’82)

This work: no capacity constraints, yes complementarities

Public projects

Committee selection
Related Work

Matching
- Existence (Gale + Shapley ’62)
- No complementarities (Hatfield and Kojima ’08)
- Strategyproofness (Dubins + Freedman ’81, Roth ’82)

This work: no capacity constraints, yes complementarities

Public projects
- Osheto ’96, Papadimitriou + Schapira + Singer ’08

This work: no money

Committee selection
Related Work

Matching
• Existence (Gale + Shapley ’62)
• No complementarities (Hatfield and Kojima ’08)
• Strategyproofness (Dubins + Freedman ’81, Roth ’82)
This work: no capacity constraints, yes complementarities

Public projects
• Osheto ’96, Papadimitriou + Schapira + Singer ’08
This work: no money

Committee selection
• Aziz et al. ’14, Jiang + Mungala + Wang ’20
This work: no budget
Model

- **n agents**, denoted \(N = \{1, \ldots, n\} \).
- **\(g \) public goods**, denoted \(G = \{1, \ldots, g\} \).
- Each agent \(i \in \{1, \ldots, n\} \) has **complete preferences** \(\succ_i \) over \(G \).
- A **menu** \(M \subseteq G \) induces a **matching**: agent \(i \) uses their favorite good in \(M \).
Model

- **n agents**, denoted \(N = \{1, \ldots, n\} \).
- **g public goods**, denoted \(G = \{1, \ldots, g\} \).
- Each agent \(i \in \{1, \ldots, n\} \) has **complete preferences** \(\succ_i \) over \(G \).
- A **menu** \(M \subseteq G \) induces a **matching**: agent \(i \) uses their favorite good in \(M \).

A menu \(M \subseteq G \) of public goods is **t-stable** if:
- **t-feasibility**: each provided public good \(\gamma \in M \) is used by \(\geq t \) agents.
- **t-uncontestability**: there do not exist \(t \) “unhappy” agents, and an unprovided public good \(\gamma \in G \setminus M \), such that each of these agents prefers \(\gamma \) over all provided public goods in \(M \).
Model

- \(n \) agents, denoted \(N = \{1, \ldots, n\} \).
- \(g \) public goods, denoted \(G = \{1, \ldots, g\} \).
- Each agent \(i \in \{1, \ldots, n\} \) has **complete preferences** \(\succ_i \) over \(G \).
- A **menu** \(M \subseteq G \) induces a **matching**: agent \(i \) uses their favorite good in \(M \)

A menu \(M \subseteq G \) of public goods is **\(t \)-stable** if:

- **\(t \)-feasibility**: each provided public good \(\gamma \in M \) is used by \(\geq t \) agents.
- **\(t \)-uncontestability**: there do not exist \(t \) “unhappy” agents, and an unprovided public good \(\gamma \in G \setminus M \), such that each of these agents prefers \(\gamma \) over all provided public goods in \(M \).

- Feasibility \(\rightarrow \) provide fewer public goods
- Uncontestability \(\rightarrow \) provide more public goods
Model

- **n agents**, denoted $N = \{1, \ldots, n\}$.
- **g public goods**, denoted $G = \{1, \ldots, g\}$.
- Each agent $i \in \{1, \ldots, n\}$ has **complete preferences** \succ_i over G.
- A **menu** $M \subseteq G$ induces a **matching**: agent i uses their favorite good in M.

A menu $M \subseteq G$ of public goods is **t-stable** if:

- **t-feasibility**: each provided public good $\gamma \in M$ is used by $\geq t$ agents.
- **t-uncontestability**: there do not exist t “unhappy” agents, and an unprovided public good $\gamma \in G \setminus M$, such that each of these agents prefers γ over all provided public goods in M.

- Feasibility \rightarrow provide fewer public goods
- Uncontestability \rightarrow provide more public goods

- **Menu selection problem** $= (\text{agents, public goods, preferences})$.
Example

- **t-feasibility**: each provided good $\gamma \in M$ used by $\geq t$ agents.
- **t-uncontestability**: $\not\exists t$ "unhappy" agents who prefer $\gamma \in G \setminus M$

\[\{ \text{t-stable} \} \]
Example

- **t-feasibility**: each provided good $\gamma \in M$ used by $\geq t$ agents.
- **t-uncontestability**: \forall t "unhappy" agents who prefer $\gamma \in G \setminus M$ \(\{ t\text{-stable} \}\)
Example

- **t-feasibility**: each provided good $\gamma \in M$ used by $\geq t$ agents.
- **t-uncontestability**: \nexists t “unhappy” agents who prefer $\gamma \in G \setminus M$

Example

$t = 4$

$n = 9$ agents

$g = 3$ goods

<table>
<thead>
<tr>
<th>Agents</th>
<th>$3 \times 1 \succ 2 \succ 3$</th>
<th>$3 \times 2 \succ 3 \succ 1$</th>
<th>$3 \times 3 \succ 1 \succ 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>${1}$</td>
<td>${1, 2}$</td>
<td>${1, 2, 3}$</td>
</tr>
</tbody>
</table>

t-stable
- **t-feasibility**: each provided good $\gamma \in M$ used by $\geq t$ agents.
- **t-uncontestability**: $\neg \exists t$ “unhappy” agents who prefer $\gamma \in G \setminus M$.

Example

$t = 4$

$n = 9$ agents

$g = 3$ goods

<table>
<thead>
<tr>
<th>Agents</th>
<th>$3 \times 1 \succ 2 \succ 3$</th>
<th>$3 \times 2 \succ 3 \succ 1$</th>
<th>$3 \times 3 \succ 1 \succ 2$</th>
</tr>
</thead>
</table>

\emptyset not t-stable:

$\iff t$-contestable: $9 \geq t$ agents prefer 1 over \emptyset

- \{1\}
- \{1, 2\}
- \{1, 2, 3\}
t-feasibility: each provided good $\gamma \in M$ used by $\geq t$ agents.

t-uncontestability: $\not\exists t$ “unhappy” agents who prefer $\gamma \in G \setminus M$
Example

- **t-feasibility**: each provided good $\gamma \in M$ used by $\geq t$ agents.
- **t-uncontestability**: $\not \exists t$ “unhappy” agents who prefer $\gamma \in G \setminus M$ \{t-stable\}

Example

$t = 4$
$n = 9$ agents
$g = 3$ goods

Agents

| 3 \times 1 \succ 2 \succ 3 |
| 3 \times 2 \succ 3 \succ 1 |
| 3 \times 3 \succ 1 \succ 2 |

- \emptyset not t-stable:
 - \rightarrow t-contestable: $9 \geq t$ agents prefer 1 over \emptyset
- $\{1\}$ not t-stable:
 - \rightarrow t-contestable: $6 \geq t$ agents prefer 3 over 1
- $\{1, 2\}$ not t-stable:
 - \rightarrow t-infeasible: only 3 < t agents use 2
- $\{1, 2, 3\}$
Example

- **t-feasibility**: each provided good $\gamma \in M$ used by $\geq t$ agents.
- **t-uncontestability**: \nexists t “unhappy” agents who prefer $\gamma \in G \setminus M$ \(\{t\text{-stable}\}\)

Example

$t = 4$

$n = 9$ agents

$g = 3$ goods

Agents

\begin{align*}
3 \times 1 & \succ 2 \succ 3 \\
3 \times 2 & \succ 3 \succ 1 \\
3 \times 3 & \succ 1 \succ 2
\end{align*}

<table>
<thead>
<tr>
<th>Bundle</th>
<th>t-stable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>not t-stable: $\leftrightarrow t$-contestable: $9 \geq t$ agents prefer 1 over \emptyset</td>
</tr>
<tr>
<td>${1}$</td>
<td>not t-stable: $\leftrightarrow t$-contestable: $6 \geq t$ agents prefer 3 over 1</td>
</tr>
<tr>
<td>${1, 2}$</td>
<td>not t-stable: $\leftrightarrow t$-infeasible: only $3 < t$ agents use 2</td>
</tr>
<tr>
<td>${1, 2, 3}$</td>
<td>not t-stable: $\leftrightarrow t$-infeasible: only $3 < t$ agents use each good</td>
</tr>
</tbody>
</table>
Example

- **t-feasibility**: each provided good $\gamma \in M$ used by $\geq t$ agents.
- **t-uncontestability**: $\forall t$ “unhappy” agents who prefer $\gamma \in G \setminus M$ \(\} t\)-stable

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 4$</td>
</tr>
<tr>
<td>$n = 9$ agents</td>
</tr>
<tr>
<td>$g = 3$ goods</td>
</tr>
<tr>
<td>Agents</td>
</tr>
<tr>
<td>$3 \times 1 \succ 2 \succ 3$</td>
</tr>
<tr>
<td>$3 \times 2 \succ 3 \succ 1$</td>
</tr>
<tr>
<td>$3 \times 3 \succ 1 \succ 2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>Stable</th>
<th>Unstable</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>not t-stable:</td>
<td>t-contestable: $9 \geq t$ agents prefer 1 over \emptyset</td>
</tr>
<tr>
<td>${1}$</td>
<td>not t-stable:</td>
<td>t-contestable: $6 \geq t$ agents prefer 3 over 1</td>
</tr>
<tr>
<td>${1, 2}$</td>
<td>not t-stable:</td>
<td>t-infeasible: only $3 < t$ agents use 2</td>
</tr>
<tr>
<td>${1, 2, 3}$</td>
<td>not t-stable:</td>
<td>t-infeasible: only $3 < t$ agents use each good</td>
</tr>
</tbody>
</table>

No t-stable menu exists!
Example

- **t-feasibility**: each provided good $\gamma \in M$ used by $\geq t$ agents.
- **u-uncontestability**: $\not\exists u$ “unhappy” agents who prefer $\gamma \in G \setminus M$ \((t, u) \)-stable

Example

\[
\begin{align*}
\text{t = 4, u = 7} & \\
\text{n = 9 agents} & \\
\text{g = 3 goods} & \\
\text{Agents} & \begin{align*}
\text{Agents} & \begin{align*}
3 \times 1 & \succ 2 \succ 3 \\
3 \times 2 & \succ 3 \succ 1 \\
3 \times 3 & \succ 1 \succ 2
\end{align*}
\end{align*}
\end{align*}
\]
Example

- **t-feasibility**: each provided good $\gamma \in M$ used by $\geq t$ agents.
- **u-uncontestability**: $\not\exists u$ "unhappy" agents who prefer $\gamma \in G \setminus M$ \((t, u) \)-stable

Example

- $t = 4$, $u = 7$
- $n = 9$ agents
- $g = 3$ goods

Agents

<table>
<thead>
<tr>
<th>3 x 1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 x 2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3 x 3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
\emptyset \quad \text{not \((t, u)\)-stable:}
\]

\[
\leftrightarrow \quad \text{u-contestable: } 9 \geq u \text{ agents prefer 1 over } \emptyset
\]

- $\{1\}$
- $\{1, 2\}$
- $\{1, 2, 3\}$
Example

- **t-feasibility**: each provided good $\gamma \in M$ used by $\geq t$ agents.
- **u-uncontestability**: $\not\exists u$ “unhappy” agents who prefer $\gamma \in G \setminus M$.

(t, u)-stable

Example

$t = 4$, $u = 7$

- $n = 9$ agents
- $g = 3$ goods

Agents	$3 \times 1 \succ 2 \succ 3$
	$3 \times 2 \succ 3 \succ 1$
	$3 \times 3 \succ 1 \succ 2$

\[\emptyset \] not (t, u)-stable:

\[\rightarrow u\text{-contestable}: 9 \geq u \text{ agents prefer 1 over } \emptyset \]

\[
\begin{align*}
\{1\} \\
\{1, 2\} & \text{ not } (t, u)\text{-stable:} \\
& \rightarrow t\text{-infeasible: only } 3 < t \text{ agents use 2} \\
\{1, 2, 3\}
\end{align*}
\]
Example

- **t-feasibility**: each provided good $\gamma \in M$ used by $\geq t$ agents.
- **u-uncontestability**: $\forall u$ "unhappy" agents who prefer $\gamma \in G \setminus M$

Example

$t = 4, \ u = 7$

$n = 9$ agents

$g = 3$ goods

Agents

\[
\begin{align*}
3 \times 1 & \succ 2 \succ 3 \\
3 \times 2 & \succ 3 \succ 1 \\
3 \times 3 & \succ 1 \succ 2
\end{align*}
\]

- \emptyset not (t, u)-stable:
 - \leftrightarrow **u-contestable**: $9 \geq u$ agents prefer 1 over \emptyset
 - $\{1\}$
 - $\{1, 2\}$ not (t, u)-stable:
 - \leftrightarrow **t-infeasible**: only $3 < t$ agents use 2
 - $\{1, 2, 3\}$ not (t, u)-stable:
 - \leftrightarrow **t-infeasible**: only $3 < t$ agents use each good
Example

- **t-feasibility**: each provided good $\gamma \in M$ used by $\geq t$ agents.
- **u-uncontestability**: $\nexists \; u$ "unhappy" agents who prefer $\gamma \in G \setminus M$ \{(t, u)-stable\}

Example

$t = 4$, $u = 7$
$n = 9$ agents
$g = 3$ goods

Agents

$\begin{align*}
3 \times 1 & \succ 2 \succ 3 \\
3 \times 2 & \succ 3 \succ 1 \\
3 \times 3 & \succ 1 \succ 2
\end{align*}$

\emptyset not (t, u)-stable:
\[\leftrightarrow u\text{-contestable}: \; 9 \geq u \text{ agents prefer } 1 \text{ over } \emptyset \]

$\{1\}$ (t, u)-stable.

$\{1, 2\}$ not (t, u)-stable:
\[\leftrightarrow t\text{-infeasible}: \; \text{only } 3 < t \text{ agents use } 2 \]

$\{1, 2, 3\}$ not (t, u)-stable:
\[\leftrightarrow t\text{-infeasible}: \; \text{only } 3 < t \text{ agents use each good} \]
Example

- **t-feasibility**: each provided good $\gamma \in M$ used by $\geq t$ agents.
- **u-uncontestability**: $\forall u$ "unhappy" agents who prefer $\gamma \in G \setminus M$ \{ (t, u)-stable \}

Example

$t = 4$, $u = 7$
$n = 9$ agents
$g = 3$ goods
Agents

<table>
<thead>
<tr>
<th>Agent</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>\succ</td>
<td>2</td>
<td>\succ</td>
</tr>
<tr>
<td>3</td>
<td>\succ</td>
<td>3</td>
<td>\succ</td>
</tr>
<tr>
<td>3</td>
<td>\succ</td>
<td>1</td>
<td>\succ</td>
</tr>
</tbody>
</table>

- \emptyset not (t, u)-stable:
 - $\leftrightarrow u$-contestable: $9 \geq u$ agents prefer 1 over \emptyset

- $\{1\}$ (t, u)-stable.

- $\{1, 2\}$ not (t, u)-stable:
 - $\leftrightarrow t$-infeasible: only $3 < t$ agents use 2

- $\{1, 2, 3\}$ not (t, u)-stable:
 - $\leftrightarrow t$-infeasible: only $3 < t$ agents use each good

When u/t sufficiently large, (t, u)-stable menus exist.
Overview

We are interested in questions of:

Existence

↔ For which t, u do (t, u)-stable menus exist for all menu selection problems?

Strategyproofness

↔ When existence guaranteed, for which g, t, u is there a SP mechanism?
We are interested in questions of:

Existence

\[\Leftrightarrow \text{For which } t, u \text{ do } (t, u)\text{-stable menus exist for all menu selection problems?} \]

- When \(u = \infty \) and \(t = 0 \), all menus trivially \((t, u)\text{-stable.}\)

Strategyproofness

\[\Leftrightarrow \text{When existence guaranteed, for which } g, t, u \text{ is there a SP mechanism?} \]
We are interested in questions of:

<table>
<thead>
<tr>
<th>Existence</th>
<th>For which t, u do (t, u)-stable menus exist for all menu selection problems?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>● When $u = \infty$ and $t = 0$, all menus trivially (t, u)-stable.</td>
</tr>
<tr>
<td></td>
<td>● How much closer can u, t get to guarantee existence?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strategyproofness</th>
<th>When existence guaranteed, for which g, t, u is there a SP mechanism?</th>
</tr>
</thead>
</table>
We are interested in questions of:

Existence
- For which \(t, u \) do \((t, u)\)-stable menus exist for all menu selection problems?
 - When \(u = \infty \) and \(t = 0 \), all menus trivially \((t, u)\)-stable.
 - How much closer can \(u, t \) get to guarantee existence? We provide:
 - Tight characterization for \(g \leq 6 \)

Strategyproofness
- When existence guaranteed, for which \(g, t, u \) is there a SP mechanism?
We are interested in questions of:

Existence

\leadsto For which t, u do (t, u)-stable menus exist for all menu selection problems?

- When $u = \infty$ and $t = 0$, all menus trivially (t, u)-stable.
- How much closer can u, t get to guarantee existence? We provide:
 - Tight characterization for $g \leq 6$
 - Lower & upper bounds for $g \geq 7$

Strategyproofness

\leadsto When existence guaranteed, for which g, t, u is there a SP mechanism?
We are interested in questions of:

Existence

For which \(t, u \) do \((t, u)\)-stable menus exist for all menu selection problems?

- When \(u = \infty \) and \(t = 0 \), all menus trivially \((t, u)\)-stable.
- How much closer can \(u, t \) get to guarantee existence? We provide:
 - Tight characterization for \(g \leq 6 \)
 - Lower & upper bounds for \(g \geq 7 \)

Strategyproofness

When existence guaranteed, for which \(g, t, u \) is there a SP mechanism?

- \(g = 2 \): simple anonymous SP mechanism
Overview

We are interested in questions of:

Existence

→ For which t, u do (t, u)-stable menus exist for all menu selection problems?

- When $u = \infty$ and $t = 0$, all menus trivially (t, u)-stable.
- How much closer can u, t get to guarantee existence? We provide:
 - Tight characterization for $g \leq 6$
 - Lower & upper bounds for $g \geq 7$

Strategyproofness

→ When existence guaranteed, for which g, t, u is there a SP mechanism?

- $g = 2$: simple anonymous SP mechanism
- $g = 3, 4, 5, 6$: impossibility result (no anonymous SP mechanism)
Existence
Theorem.
Let $g \geq 3$ and $u \leq t - 2$. Then there exists a menu selection problem with no (t, u)-stable menu.

Proof sketch.
One can check these agents have no (t, u)-stable menu:

- $t - 1 \times 1 \succ 2 \succ 3$
- $t - 1 \times 2 \succ 3 \succ 1$
- $t - 1 \times 3 \succ 1 \succ 2$

Proposition.
Let $g \geq 2$ and $u > g(t - 1)$. Then for all menu selection problems, there exists a (t, u)-stable menu.

Proof sketch.
Let $M := \{ \gamma \in G : \exists t \text{ agents with favorite good } \gamma \}$. One can check M is (t, u)-stable.
Simple bounds

Lower bound

Theorem. Let $g \geq 3$ and $u \leq 2t - 2$. Then there exists a menu selection problem with no (t, u)-stable menu.

Upper bound
Lower bound

Theorem. Let \(g \geq 3 \) and \(u \leq 2t - 2 \). Then there exists a menu selection problem with no \((t, u)\)-stable menu.

Proof sketch. One can check these agents have no \((t, u)\)-stable menu:

- \(t - 1 \times 1 \succ 2 \succ 3 \)
- \(t - 1 \times 2 \succ 3 \succ 1 \)
- \(t - 1 \times 3 \succ 1 \succ 2 \)

Upper bound
Simple bounds

Lower bound

Theorem. Let $g \geq 3$ and $u \leq 2t - 2$. Then there exists a menu selection problem with no (t, u)-stable menu.

Proof sketch. One can check these agents have no (t, u)-stable menu:
- $t - 1 \times 1 \succ 2 \succ 3$
- $t - 1 \times 2 \succ 3 \succ 1$
- $t - 1 \times 3 \succ 1 \succ 2$

Upper bound

Proposition. Let $g \geq 2$ and $u > g(t - 1)$. Then for all menu selection problems, there exists a (t, u)-stable menu.
Simple bounds

Lower bound

Theorem. Let \(g \geq 3 \) and \(u \leq 2t - 2 \). Then there exists a menu selection problem with no \((t, u)\)-stable menu.

Proof sketch. One can check these agents have no \((t, u)\)-stable menu:

- \(t - 1 \times 1 \succ 2 \succ 3 \)
- \(t - 1 \times 2 \succ 3 \succ 1 \)
- \(t - 1 \times 3 \succ 1 \succ 2 \)

Upper bound

Proposition. Let \(g \geq 2 \) and \(u > g(t - 1) \). Then for all menu selection problems, there exists a \((t, u)\)-stable menu.

Proof sketch. Let \(M := \{\gamma \in G : \exists t \text{ agents with favorite good } \gamma\} \). One can check \(M \) is \((t, u)\)-stable.
To guarantee existence of stable menus, simple bounds say:

- Necessary: $u \geq 2t - 1$.
- Sufficient: $u \geq g(t - 1) + 1$.

\{ gap of factor of $\sim g$ \}

This simple lower bound is tight for $g = 3, 4, 5, 6$:

Theorem. Let $g \in \{3, 4, 5, 6\}$ and $u \geq 2t - 1$. Then every menu selection problem has a (t, u)-stable menu.

(We'll talk about $g \geq 7$ later...)

Proof sketch.

- $g = 3, 4$: analyze greedy algorithm. Analyzing cycle reveals stable menu.
- $g = 5, 6$: solve computationally. Using structural insights, reduce to polyhedra covering problem, \rightarrow 1 week on Harvard cluster using SMT solver.
Tight characterization for $g \leq 6$

To guarantee existence of stable menus, simple bounds say:

- Necessary: $u \geq 2t - 1$.
- Sufficient: $u \geq g(t - 1) + 1$.

\[\text{gap of factor of } \sim g \]

This simple lower bound is tight for $g = 3, 4, 5, 6$:

Theorem. Let $g \in \{3, 4, 5, 6\}$ and $u \geq 2t - 1$. Then every menu selection problem has a (t, u)-stable menu.
To guarantee existence of stable menus, simple bounds say:

- **Necessary**: \(u \geq 2t - 1 \).
- **Sufficient**: \(u \geq g(t - 1) + 1 \).

\]

\(\text{gap of factor of } \sim g \)

This simple lower bound is tight for \(g = 3, 4, 5, 6 \):

Theorem. Let \(g \in \{3, 4, 5, 6\} \) and \(u \geq 2t - 1 \). Then every menu selection problem has a \((t, u)\)-stable menu.

(We’ll talk about \(g \geq 7 \) later...)
Tight characterization for $g \leq 6$

To guarantee existence of stable menus, simple bounds say:

- Necessary: $u \geq 2t - 1$.
- Sufficient: $u \geq g(t - 1) + 1$.

\[
\begin{aligned}
&u \geq 2t - 1. \\
&u \geq g(t - 1) + 1.
\end{aligned}
\]

\[
\text{gap of factor of } \sim g
\]

This simple lower bound is tight for $g = 3, 4, 5, 6$:

Theorem. Let $g \in \{3, 4, 5, 6\}$ and $u \geq 2t - 1$. Then every menu selection problem has a (t, u)-stable menu.

(We’ll talk about $g \geq 7$ later...)

Proof sketch.

- $g = 3, 4$: analyze **greedy algorithm**. Analyzing cycle reveals stable menu.
- $g = 5, 6$: solve **computationally**. Using structural insights, reduce to polyhedra covering problem $\leftrightarrow 1$ week on Harvard cluster using SMT solver.
Encode menu selection problem as

\[x \in \mathbb{R}^g. \]

Example

Menu selection problem:

- \(2 \times 1 \succ 2 \succ 3 \)
- \(3 \times 2 \succ 1 \succ 3 \)

\[\rightarrow \text{gives vector } x = (2, 0, 0, 3, 0, 0). \]
Sidenote: reduction to polyhedra covering problem

- Encode menu selection problem as

\[x \in \mathbb{R}^{g^l}. \]

- Construct polyhedron \(P_{M}^{t,u,g} \) s.t.

\[M \text{ is } (t, u)\text{-stable} \iff x \in P_{M}^{t,u,g}. \]

Example
Menu selection problem:
- \(2 \times 1 \succ 2 \succ 3 \)
- \(3 \times 2 \succ 1 \succ 3 \)
\(\iff \) gives vector \(x = (2, 0, 0, 3, 0, 0). \)
Sidenote: reduction to polyhedra covering problem

- Encode menu selection problem as
 \[x \in \mathbb{R}^{g^l}. \]

- Construct polyhedron \(P_{M}^{t,u,g} \) s.t.
 \[M \text{ is (}t,u\text{-)stable } \iff x \in P_{M}^{t,u,g}. \]

- There exists a stable menu \(M \) for a menu selection problem \(x \) if and only if
 \[x \in \bigcup_{M \subseteq G} P_{M}^{t,u,g}. \]

Example
Menu selection problem:
- \(2 \times 1 \succ 2 \succ 3 \)
- \(3 \times 2 \succ 1 \succ 3 \)
 \(\iff \) gives vector \(x = (2, 0, 0, 3, 0, 0). \)
Sidenote: reduction to polyhedra covering problem

- Encode menu selection problem as
 \[x \in \mathbb{R}^g. \]

- Construct polyhedron \(P^t,u,g_M \) s.t.
 \[M \text{ is } (t, u)\text{-stable} \iff x \in P^t,u,g_M. \]

- There exists a stable menu \(M \) for a menu selection problem \(x \) if and only if
 \[x \in \bigcup_{M \subseteq G} P^t,u,g_M. \]

- All menu selection problems have stable menus if and only if
 \[\mathbb{Z}^g_{\geq 0} \subseteq \bigcup_{M \subseteq G} P^t,u,g_M. \]

Example

Menu selection problem:
- \(2 \times 1 \succ 2 \succ 3 \)
- \(3 \times 2 \succ 1 \succ 3 \)

\(\iff \) gives vector \(x = (2, 0, 0, 3, 0, 0). \)
Sidenote: reduction to polyhedra covering problem

- Encode menu selection problem as
 \[x \in \mathbb{R}^{g!}. \]

- Construct polyhedron \(P_{M}^{t,u,g} \) s.t.
 \(M \) is \((t, u)\)-stable \(\iff\) \(x \in P_{M}^{t,u,g} \).

- There exists a stable menu \(M \) for a menu selection problem \(x \) if and only if
 \[x \in \bigcup_{M \subseteq G} P_{M}^{t,u,g}. \]

- All menu selection problems have stable menus if and only if
 \[\mathbb{Z}^{g!}_{\geq 0} \subseteq \bigcup_{M \subseteq G} P_{M}^{t,u,g}. \]

Example

Menu selection problem:
- \(2 \times 1 \gg 2 \gg 3 \)
- \(3 \times 2 \gg 1 \gg 3 \)
\(\iff\) gives vector \(x = (2, 0, 0, 3, 0, 0) \).

How to test if \(\{1, 2\} \) is \((t, u)\)-stable?

\(t\)-feasibility:
- \(\langle (1, 1, 0, 0, 1, 0), x \rangle \geq t \)
 types taking 1
- \(\langle (0, 0, 1, 1, 0, 1), x \rangle \geq t \)
 types taking 2

\(u\)-defendability:
- \(\langle (0, 0, 0, 0, 1, 1), x \rangle \leq u \)
 types demanding 3
Encode menu selection problem as

\[x \in \mathbb{R}^g. \]

Construct polyhedron \(P_{M}^{t,u,g} \) s.t.

\[M \text{ is } (t, u)-\text{stable} \iff x \in P_{M}^{t,u,g}. \]

There exists a stable menu \(M \) for a menu selection problem \(x \) if and only if

\[x \in \bigcup_{M \subseteq G} P_{M}^{t,u,g}. \]

All menu selection problems have stable menus if and only if

\[\mathbb{Z}_{\geq 0}^g \subseteq \bigcup_{M \subseteq G} P_{M}^{t,u,g}. \]

Example

Menu selection problem:

- \(2 \times 1 \succ 2 \succ 3 \)
- \(3 \times 2 \succ 1 \succ 3 \)

\[\iff \text{gives vector } x = (2, 0, 0, 3, 0, 0). \]

\[
\begin{pmatrix}
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & -1 \\
\end{pmatrix}
\begin{pmatrix}
t \\
t \\
-u + 1 \\
\end{pmatrix}
\]

\[P_{\{1, 2\}}^{t,u,g} := \{ v : Av \geq b \} \text{ encodes for which menu selection problems } \{1, 2\} \text{ is stable.} \]
Theorem. Let $g \geq 7$ and $u \leq 23\lfloor \frac{t-1}{11} \rfloor$. Then there exists a menu selection problem with no (t, u)-stable menu. (cf. $u \geq 2t - 1 \iff$ existence when $g \leq 6$)
Beyond $g \geq 7$

Theorem. Let $g \geq 7$ and $u \leq 23\lfloor \frac{t-1}{11} \rfloor$. Then there exists a menu selection problem with no (t, u)-stable menu. (cf. $u \geq 2t - 1 \Leftrightarrow$ existence when $g \leq 6$)

Set $x := \lfloor \frac{t-1}{11} \rfloor$. Then the following 70x agents have no (t, u)-stable menu:

<table>
<thead>
<tr>
<th>#</th>
<th>Preference</th>
<th>#</th>
<th>Preference</th>
<th>#</th>
<th>Preference</th>
<th>#</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x</td>
<td>1 \succ 2 \succ 3</td>
<td>3x</td>
<td>1 \succ 2 \succ 4 \succ 5</td>
<td>x</td>
<td>1 \succ 4 \succ 2 \succ 5</td>
<td>x</td>
<td>1 \succ 6 \succ 4 \succ 2</td>
</tr>
<tr>
<td>5x</td>
<td>2 \succ 3 \succ 4</td>
<td>3x</td>
<td>2 \succ 3 \succ 5 \succ 6</td>
<td>x</td>
<td>2 \succ 5 \succ 3 \succ 6</td>
<td>x</td>
<td>2 \succ 7 \succ 5 \succ 3</td>
</tr>
<tr>
<td>5x</td>
<td>3 \succ 4 \succ 5</td>
<td>3x</td>
<td>3 \succ 4 \succ 6 \succ 7</td>
<td>x</td>
<td>3 \succ 6 \succ 4 \succ 7</td>
<td>x</td>
<td>3 \succ 1 \succ 6 \succ 4</td>
</tr>
<tr>
<td>5x</td>
<td>4 \succ 5 \succ 6</td>
<td>3x</td>
<td>4 \succ 5 \succ 7 \succ 1</td>
<td>x</td>
<td>4 \succ 7 \succ 5 \succ 1</td>
<td>x</td>
<td>4 \succ 2 \succ 7 \succ 5</td>
</tr>
<tr>
<td>5x</td>
<td>5 \succ 6 \succ 7</td>
<td>3x</td>
<td>5 \succ 6 \succ 1 \succ 2</td>
<td>x</td>
<td>5 \succ 1 \succ 6 \succ 2</td>
<td>x</td>
<td>5 \succ 3 \succ 1 \succ 6</td>
</tr>
<tr>
<td>5x</td>
<td>6 \succ 7 \succ 1</td>
<td>3x</td>
<td>6 \succ 7 \succ 2 \succ 3</td>
<td>x</td>
<td>6 \succ 2 \succ 7 \succ 3</td>
<td>x</td>
<td>6 \succ 4 \succ 2 \succ 7</td>
</tr>
<tr>
<td>5x</td>
<td>7 \succ 1 \succ 2</td>
<td>3x</td>
<td>7 \succ 1 \succ 3 \succ 4</td>
<td>x</td>
<td>7 \succ 3 \succ 1 \succ 4</td>
<td>x</td>
<td>7 \succ 5 \succ 3 \succ 1</td>
</tr>
</tbody>
</table>

- Simplified and cleaned from counterexample found by SMT solver.
Beyond $g \geq 7$

Theorem. Let $g \geq 7$ and $u \leq 23\lfloor \frac{t-1}{11} \rfloor$. Then there exists a menu selection problem with no (t, u)-stable menu. (cf. $u \geq 2t - 1 \iff$ existence when $g \leq 6$)

Set $x := \lfloor \frac{t-1}{11} \rfloor$. Then the following $70x$ agents have no (t, u)-stable menu:

<table>
<thead>
<tr>
<th>#</th>
<th>Preference</th>
<th>#</th>
<th>Preference</th>
<th>#</th>
<th>Preference</th>
<th>#</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x</td>
<td>1 \succ 2 \succ 3</td>
<td>3x</td>
<td>1 \succ 2 \succ 4 \succ 5</td>
<td>x</td>
<td>1 \succ 4 \succ 2 \succ 5</td>
<td>x</td>
<td>1 \succ 6 \succ 4 \succ 2</td>
</tr>
<tr>
<td>5x</td>
<td>2 \succ 3 \succ 4</td>
<td>3x</td>
<td>2 \succ 3 \succ 5 \succ 6</td>
<td>x</td>
<td>2 \succ 5 \succ 3 \succ 6</td>
<td>x</td>
<td>2 \succ 7 \succ 5 \succ 3</td>
</tr>
<tr>
<td>5x</td>
<td>3 \succ 4 \succ 5</td>
<td>3x</td>
<td>3 \succ 4 \succ 6 \succ 7</td>
<td>x</td>
<td>3 \succ 6 \succ 4 \succ 7</td>
<td>x</td>
<td>3 \succ 1 \succ 6 \succ 4</td>
</tr>
<tr>
<td>5x</td>
<td>4 \succ 5 \succ 6</td>
<td>3x</td>
<td>4 \succ 5 \succ 7 \succ 1</td>
<td>x</td>
<td>4 \succ 7 \succ 5 \succ 1</td>
<td>x</td>
<td>4 \succ 2 \succ 7 \succ 5</td>
</tr>
<tr>
<td>5x</td>
<td>5 \succ 6 \succ 7</td>
<td>3x</td>
<td>5 \succ 6 \succ 1 \succ 2</td>
<td>x</td>
<td>5 \succ 1 \succ 6 \succ 2</td>
<td>x</td>
<td>5 \succ 3 \succ 1 \succ 6</td>
</tr>
<tr>
<td>5x</td>
<td>6 \succ 7 \succ 1</td>
<td>3x</td>
<td>6 \succ 7 \succ 2 \succ 3</td>
<td>x</td>
<td>6 \succ 2 \succ 7 \succ 3</td>
<td>x</td>
<td>6 \succ 4 \succ 2 \succ 7</td>
</tr>
<tr>
<td>5x</td>
<td>7 \succ 1 \succ 2</td>
<td>3x</td>
<td>7 \succ 1 \succ 3 \succ 4</td>
<td>x</td>
<td>7 \succ 3 \succ 1 \succ 4</td>
<td>x</td>
<td>7 \succ 5 \succ 3 \succ 1</td>
</tr>
</tbody>
</table>

- Simplified and cleaned from counterexample found by SMT solver.
- Also have somewhat improved upper bound: $u \geq (g-2)(t - 1) + 1$.

Beyond $g \geq 7$

Theorem. Let $g \geq 7$ and $u \leq 23\left\lfloor \frac{t-1}{11} \right\rfloor$. Then there exists a menu selection problem with no (t, u)-stable menu. (cf. $u \geq 2t - 1 \Leftrightarrow$ existence when $g \leq 6$)

Set $x := \left\lfloor \frac{t-1}{11} \right\rfloor$. Then the following 70$x$ agents have no (t, u)-stable menu:

<table>
<thead>
<tr>
<th>#</th>
<th>Preference</th>
<th>#</th>
<th>Preference</th>
<th>#</th>
<th>Preference</th>
<th>#</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x</td>
<td>1 ⪰ 2 ⪰ 3</td>
<td>3x</td>
<td>1 ⪰ 2 ⪰ 4 ⪱ 5</td>
<td>x</td>
<td>1 ⪰ 4 ⪱ 2 ⪱ 5</td>
<td>x</td>
<td>1 ⪱ 6 ⪱ 4 ⪱ 2</td>
</tr>
<tr>
<td>5x</td>
<td>2 ⪱ 3 ⪱ 4</td>
<td>3x</td>
<td>2 ⪱ 3 ⪱ 5 ⪱ 6</td>
<td>x</td>
<td>2 ⪱ 5 ⪱ 3 ⪱ 6</td>
<td>x</td>
<td>2 ⪱ 7 ⪱ 5 ⪱ 3</td>
</tr>
<tr>
<td>5x</td>
<td>3 ⪱ 4 ⪱ 5</td>
<td>3x</td>
<td>3 ⪱ 4 ⪱ 6 ⪱ 7</td>
<td>x</td>
<td>3 ⪱ 6 ⪱ 4 ⪱ 7</td>
<td>x</td>
<td>3 ⪱ 1 ⪱ 6 ⪱ 4</td>
</tr>
<tr>
<td>5x</td>
<td>4 ⪱ 5 ⪱ 6</td>
<td>3x</td>
<td>4 ⪱ 5 ⪱ 7 ⪱ 1</td>
<td>x</td>
<td>4 ⪱ 7 ⪱ 5 ⪱ 1</td>
<td>x</td>
<td>4 ⪱ 2 ⪱ 7 ⪱ 5</td>
</tr>
<tr>
<td>5x</td>
<td>5 ⪱ 6 ⪱ 7</td>
<td>3x</td>
<td>5 ⪱ 6 ⪱ 1 ⪱ 2</td>
<td>x</td>
<td>5 ⪱ 1 ⪱ 6 ⪱ 2</td>
<td>x</td>
<td>5 ⪱ 3 ⪱ 1 ⪱ 6</td>
</tr>
<tr>
<td>5x</td>
<td>6 ⪱ 7 ⪱ 1</td>
<td>3x</td>
<td>6 ⪱ 7 ⪱ 2 ⪱ 3</td>
<td>x</td>
<td>6 ⪱ 2 ⪱ 7 ⪱ 3</td>
<td>x</td>
<td>6 ⪱ 4 ⪱ 2 ⪱ 7</td>
</tr>
<tr>
<td>5x</td>
<td>7 ⪱ 1 ⪱ 2</td>
<td>3x</td>
<td>7 ⪱ 1 ⪱ 3 ⪱ 4</td>
<td>x</td>
<td>7 ⪱ 3 ⪱ 1 ⪱ 4</td>
<td>x</td>
<td>7 ⪱ 5 ⪱ 3 ⪱ 1</td>
</tr>
</tbody>
</table>

- Simplified and cleaned from counterexample found by SMT solver.
- Also have somewhat improved upper bound: $u \geq (g-2)(t-1) + 1$.
- When $g \geq 7$, existence question open for $23\left\lfloor \frac{t-1}{11} \right\rfloor < u \leq (g-2)(t-1)$.
 \[\sim g \text{ gap} \]
Strategyproofness
Fix g, t, u such that every menu selection problem has a stable menu. Does there exist a strategyproof mechanism

$$\mathcal{M} : (\text{menu selection problem}) \mapsto (t, u)\text{-stable menu?}$$
Fix g, t, u such that every menu selection problem has a stable menu.

Does there exist a strategyproof mechanism

$\mathcal{M} : (\text{menu selection problem}) \mapsto (t, u)$-stable menu?

Theorem. For $g = 2$, there exists an anonymous SP mechanism.
Fix g, t, u such that every menu selection problem has a stable menu.

Does there exist a strategyproof mechanism

$$M : (\text{menu selection problem}) \mapsto (t, u)\text{-stable menu?}$$

Theorem. For $g = 2$, there exists an anonymous SP mechanism.

Proof sketch. Do a majority vote (paying attention when to offer two or zero goods instead).
Fix g, t, u such that every menu selection problem has a stable menu.

Does there exist a strategyproof mechanism

$$\mathcal{M} : \text{(menu selection problem)} \rightarrow (t, u)\text{-stable menu?}$$

Theorem. For $g = 2$, there exists an anonymous SP mechanism.

Proof sketch. Do a majority vote (paying attention when to offer two or zero goods instead).

Theorem. For $g = 3, 4, 5, 6$, there is no anonymous SP mechanism.
Fix g, t, u such that every menu selection problem has a stable menu.

Does there exist a strategyproof mechanism

$$\mathcal{M} : \text{(menu selection problem)} \mapsto (t, u)\text{-stable menu?}$$

Theorem. For $g = 2$, there exists an anonymous SP mechanism.

Proof sketch. Do a majority vote (paying attention when to offer two or zero goods instead).

Theorem. For $g = 3, 4, 5, 6$, there is no anonymous SP mechanism.

Proof sketch. Given voting problem, carefully transform into menu selection problem and invoke Gibbard–Statterthwaite (transform so that unanimity implied by stability). Challenge: menu selection problem should only have singletons as stable menus.
Takeaways

• We introduce a new model for a matching market, with complementarities and no capacity constraints.
• For $g \leq 6$, we provide a tight characterization for when stable menus exist.
• For $g \geq 7$, we provide lower and upper bounds for when stable menus exist.
• For $3 \leq g \leq 6$, there are fundamental barriers for strategyproofness.
• We introduce a new model for a matching market, with complementarities and no capacity constraints.

• For $g \leq 6$, we provide a tight characterization for when stable menus exist.

• For $g \geq 7$, we provide lower and upper bounds for when stable menus exist.

• For $3 \leq g \leq 6$, there are fundamental barriers for strategyproofness.

Thank you! Questions?